Design Rules for Advanced Materials: Neutron Scattering and Neutron Spin-Echo

Vijay R. Tirumala*

Polymers Division, National Institute of Standards and Technology

*Presently at Cabot Corporation

Teams

Dr. Wen-li Wu

Taiki Tominaga (now PhD, @ RIKEN)

Dr. Sanghun Lee (now at Samsung)

Prof. Jian Ping Gong

Prof. Hidemitsu Furukawa

Prof. Yoshihito Osada

Dr. Paul Butler (NCNR)

Dr. Michi Nagao (NCNR)

Thanks to...

Dr. Eric Lin (NIST)

Dr. Jack Douglas & Dr. Steve Hudson (Polymers Division)

Dr. John Barker, Dr. David Miller

United States Dept. of Commerce, & Grant-in-Aid for the Specially Promoted Research, Japan.

Hydrogels: Introduction

- ☐ Crosslinked polymer networks that can absorb as much as 99% water by volume.
- ☐ Are biocompatible.
- Widely used in applications
 - personal care, pharmaceutical, biomedical, controlled release, labon-chip analytics etc.

Hydrogels: Recap

- ☐ Hydrogels can absorb and retain as much as 99% water by volume.
- Can be biocompatible.
- Widely used in applications
 - personal care, pharmaceutical, biomedical, controlled release, lab-on-chip analytics etc.
- ☐ But are inherently weak to sustain high mechanical loads.

Conventional hydrogels

Grand Challenge: Synthetic Cartilage

Contains 80% water by vol.

TOUGH!

Hydrogels w/ Improved Mechanical Properties

A number of approaches are explored to improve the extensibility of hydrogels: (i) polyrotoxane crosslinks,

(ii) clay nanocomposites, etc.

NONE, however, improve the toughness.

Double-Network Hydrogels (J.P. Gong et al., Adv. Mater. 2003, 15, 1155.)

> 85% water by vol.

Tough but elastic!

DN-gels

1st network: PAMPS (polyelectrolyte, rigid)

H₂C=ÇH

2-acrylamido, 2-methyl propane sulfonic acid (AMPS)

2nd network:PAAm (neutral, soft)

Acrylamide (AAm)

Synthetic alternative to tissue cartilage.

A fairly general approach

Polymers Division

Table 1. Compressive properties of hydrogels at room temperature.

First network	Second network	Water content [wt%]	Fracture stress σ_{max} [MPa]	Fracture strain λ_{max} [%]	$\sigma_{max}^{ DN}/\sigma_{max}^{ SN}$		
DAMBÉ 1.4 [a]		. ,	0.4				
PAMPS-1-4 [a]	- DANGS 22 0 1	92		41	- 7.5		
	PAMPS-2.2-0.1	93	3.0	80	7.5		
	PAA-1-0.1	92	2.3	75	5.8		
	PAAm-2-0.1	90	17.2	92	43		
PAMPS-1-8	-	98	0.006 [b]	0.13 [b]	_		
	TFEA-1-0.1	52	1.6 [b]	4.9 [b]	267		
How do flexible polymer chains reinforce							
a brittle primary network?							
PAAm-1-1	_	93	0.7	98	_		
	PAAm-1-0.1	92	5.4	92	7.7		
P(AMPS-co-TFEA)-1-4	_	98	0.03	73	_		
	AAm-1-0.1	93	21.0	97	700		
Collagen [c]	-	93	0.26	52	_		
	PDMAAm-1-0.1	87	2.9	53	11		
Agarose [c]	_	96	0.02	20	_		
	HEMA-2.5-0.1	66	2.4	87	120		
Bacteria cellulose	_	-	-	-	-		
	Gelatin	78	3.7	37	31 [d]		

[[]a] P-x-y: P, x, and y denote the abbreviated polymer name, molar monomer concentration, and the crosslinker concentration in mol-% with respect to the monomer, respectively. [b] Stretching properties. [c] Physically crosslinked gel prepared from 2 wt.-% solution. [d] Relative to gelatin SN gel.

J.P. Gong et al., Adv, Matter. 2003, 15, 1155.

Synergism in Tough DN-gels:

Rule of thumb in Mixtures (composites/blends/IPN):

Toughness is off the chart.

Advantage of Neutron Scattering: Contrast Variation

PAAm linear chains alone

PAMPS network alone

 $AMPS/d_3$ -AAm in D_2O/H_2O

$$2nm < \xi < 12\mu m (5 \times 10^{-5} \text{ A} < q < 0.3 \text{ A})$$
 $(\xi = \frac{2\pi}{q})$

PAMPS and PAAm: In water and in DN-gels

Schematic for structure of PAMPS (blue) and PAAm (red) in DN-gels

PAMPS in D₂O

PAMPS in DN

PAAm in D₂O

PAAm in DN

PAMPS and PAAm dissolve better in water when in presence of the other.

Response to Compression?

Uniaxial Deformation of Neutral Polymers

Solvent-cast and uniaxially extruded poly (vinyl alcohol) films.

Shibayama, M.; Wu, W.-L, et al. Macromol., 1990, 23, 1438.

Scattering Intensity lower in stretching direction: $I_{\perp} > I_{\parallel}$ Affine deformation \rightarrow Polymer chains readily deform along the extension axis.

Uniaxial Deformation of Extensible Gels

Deformation in extensible hydrogels propagates down to molecular scale.

No anisotropy in small-angle scattering.

Uniaxial Extension of DN-Gel

dPAAm chains in PAMPS network

Contrast-matched dPAAm chains in PAMPS network

No anisotropy in the small-angle region, $0.002 \le q \, (\mathring{A}^{-1}) \le 0.2$.

Uniaxial stress is effectively relaxed at small length scales.

Toughest DN-gel under pure shear

Strong low *q* anisotropy.

Structural Response to Deformation in DN-gels

100% extension

SANS Data Anaysis: Theory

Static scattering from mixtures of polyelectrolytes and neutral chains:

Benmouna and Vilgis Macromolecues, 1991, 24, 3866. Benmouna, Vilgis, Hakem and Negadi, 1991, 24, 6418.

$$S^{-1}(q) = S_o^{-1}(q) + V$$

S(q) Total Structure Matrix

 $S_o(q)$ Bare Structure Matrix

V Interaction Matrix

 $q = 4\pi/\lambda(\sin\theta)$

Theoretical Model – Contd...

3-component system of polyelectrolyte, neutral polymer and solvent

2 X 2 Matrices are needed. (Incompressible system.)

PE: Polyelectrolyte (PAMPS), NP: Neutral Polymer (PAAm), S: Solvent (water)

$$S_o(q) = \begin{pmatrix} S_{PE}^o & 0 \\ 0 & S_{NP}^o \end{pmatrix}$$

$$v_{PE-PE} = \frac{1}{\varphi_S} - 2\chi_{PE-S} + \frac{4\pi l_b}{q^2 + \kappa^2}$$

$$v_{PE-NP} = \frac{1}{\varphi_{S}} - \chi_{PE-S} - \chi_{NP-S} + \chi_{PE-NP}$$

$$V = \begin{pmatrix} v_{PE-PE} & v_{PE-NP} \\ v_{PE-NP} & v_{NP-NP} \end{pmatrix}$$

$$v_{NP-NP} = \frac{1}{\varphi_S} - 2\chi_{NP-S}$$

 $\varphi_{\scriptscriptstyle S}$: Volume fraction of the solvent

 l_b : Bjerrum length

 κ^{-1} : Debye length

Theoretical Model – Contd...

$$\frac{1}{S_{AA}} = \frac{1}{S_A^o} + v_{AB} - \frac{v_{AB}^2 S_B^o}{1 + v_{BB} S_B^o}$$

$$S_A^o = \varphi_A N_A P_A(q)$$
 φ_A : Volume fraction of A

 $N_{\scriptscriptstyle A}$: Degree of polymerization of A

 $P_{A}(q)$: Form factor of A (Debye function)

$$P_A(q) = \frac{2}{\alpha^2} \left[e^{-\alpha} + \alpha - 1 \right] \qquad \alpha = q^2 R_g^2$$

Fitting Results: PAMPS

Fitting Results: PAAm

Fitting Results: PAMPS/PAAm solution blends

Best Fit Parameters

	$\chi_{\scriptscriptstyle PE-S}$	χ_{NP-S}	$\chi_{\scriptscriptstyle PE-NP}$	Mesh length (Å)
Pure PE (PAMPS)	0.2	1	-	140
0.5 M DN	0.2	0.45	0.03	545
1M DN	0.2	0.44	0.03	771
2M DN	0.2	0.48	0.03	860

PAMPS/PAAm Solution Blends

Scaling relationship: polyelectrolyte peak position, $q^* \sim [c]^{-0.5}$ Exponent 0.6 \rightarrow Excluded volume interactions

Muthukumar, J. Chem. Phys. 1996.

Anomalous Fluctuations in PAMPS/PAAm Solution Mixtures: Neutron Spin-Echo

PAMPS/PAAm Solution Blends: Neutron Spin-Echo Spectroscopy

PAMPS relaxation at a critical molar ratio indicates complexation.

Anomalous Fluctuations in PAMPS/PAAm Solution Mixtures: Neutron Spin-Echo

Reduced diffusivity of PAMPS backbone at a critical PAMPS/PAAm molar ratio indicates complexation between the DN-gel constituents.

Charge Mismatch: AMPS & AAm in Water

AMPS in water

Atomic Charge = - 0.481 Mullikens

Courtesy: Prof. Anil Kandalam, VCU Physics

AAm in water

Atomic Charge = + 0.022 Mullikens

Ratio of accumulated charge on the monomers in water, AMPS/AAm ~ 21.86

Deformation Mechanism in DN-gels

200% extension

Summary

- ☐ Enthalpic association between the constituents allows for energy dissipation and stress-transfer from first network to the second.
- □ PAAm linear chains undergo dynamic reorganization under an applied load.

□Linear polyacrylamide chains *reinforce* the DN-gels to sustain large deformations.

Conclusion

Understanding from the studies of blend systems can be readily applied to problems in polymer nanocomposites.

polymer-particle interactions affect dispersion & performance.

Eg. well dispersed carbon black fillers improve elastomer properties.

Thanks to...

Jeff Kryzwon, Bryan Greenwald, Dr. John Barker

If I could solve all the problems myself, I would. – Thomas Edison